1413

The First Intermolecular 9,10–1',4' Photodimerization of the Anthracene Ring

Frédéric Fages, Jean-Pierre Desvergne,* Isabell Frisch, and Henri Bouas-Laurent

Laboratoire de Chimie Organique, Photophysique et Photochimie Moléculaire, CNRS U.A. 348, Université de Bordeaux I, 33405 Talence Cedex, France

9,10–1',4' Unsymmetrical anthracene ring photodimerization is observed upon irradiation of a 2,6-didecyloxyanthracene; this is the first example of anthracene intermolecular photodimerization not restricted to the *meso* positions.

Anthracenes usually photodimerize *via* a singlet state process through formation of 9,10'-10,9' bonds involving the more reactive sites. Moreover, it has been observed that the reaction, which is concentration dependent, is sensitive to the size and nature of the *meso* substituents.¹ The relatively rare deviations from this rule are only met with linked systems where conformational constraints or triplet states may favour 9,1'-10,4' or 9,1'-10,2' bond formation, respectively.^{1,2} The tendency to involve the 9,10-positions in the photodimerization process is so strong that even the *syn*-[2.2] (1,4)-anthracenophane yields not the expected 1,4-1',4' photocyclomer but the strained 9'9'-10,10' cycloadduct.³

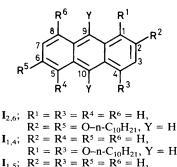
As 1,4-transannular singlet oxygen or benzyne⁴ additions to aromatic hydrocarbons have been shown to be accelerated by electron donor groups, we prepared, in order to improve the photodimerization efficiency (for photochromic purposes), several fairly soluble[†] bis(n-decyloxyanthracenes)($I_{2,6}$, $I_{1,4}$, $I_{1,5}$, and $I_{1,8}$) which have no *meso* substituents. In contrast to anthracene itself and many of its derivatives, two of these compounds display peculiar spectroscopic properties as shown in Table 1 for fluorescence emission.[‡] Indeed, the quantum yields for fluorescence emission (conc. $\leq 10^{-5}$ M) are very high ($\phi_F \approx 1$) and the fluorescence lifetimes surprisingly long ($\tau_F = 19-20$ ns) for compounds $I_{2,6}$ and $I_{1,4}$ (suggesting negligible non-radiative deactivation channels, often due, in anthracene,^{5a} to intersystem crossing) in comparison with the data obtained for the two other isomers ($\phi_F < 0.3$ and $\tau_F \approx 3-4$ ns, with anthracene $\phi_F = 0.30$ and $\tau_F = 4.5$ ns; $I_{9,10}$ behaves like 9,10 di-n-propylanthracene).^{5b}

The discrepancy between these values can be rationalized by considering the location of strongly electron donating mesomeric substituents which should modify the electron density distribution in the aromatic substrate.⁶ In that connection, we have recently reported⁷ that formylation (Vilsmeier Haack) of compound $I_{2,6}$ mainly provided two

[†] The methoxy derivatives are poorly soluble in organic solvents. The new compounds gave satisfactory spectroscopic, analytical, and mass spectral data.

[‡] The u.v. spectra are also very sensitive to substitution.

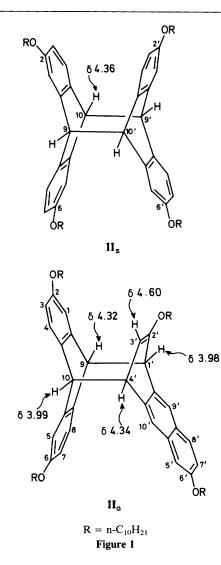
Table 1.	Fluorescence em	ission quantum	yields of co	mpounds I in	different	solvents at roo	m temperature. ^a
----------	-----------------	----------------	--------------	--------------	-----------	-----------------	-----------------------------


		$\phi_{\rm F} (\tau_{\rm F}/\rm{ns})^{\rm b}$				
Solvent	I _{2,6}	$I_{1,4}$	I _{1,5}	I _{1,8}	I _{9,10}	
Tetrahydrofuran	0.87 (23.3)	1.00 (19.4)	0.26(3.7)	0.23 (2.8)	0.80(13.8)	
Methylcyclohexane	0.99	0.90	0.28	0.17	0.86	
Benzene	1.00	0.82	0.23	0.25	0.93	
Methanol	1.00	0.98	0.24	0.23	0.76	

^a Conc. < 10^{-5} M. ^b The fluorescence lifetimes τ_F were measured in THF using a single photon counting technique as described elsewhere.¹⁰

Table 2. Photodimerization quantum yields (ϕ_R) of compounds I.^a

		II _s			
		M.p.	IIa		
	φ _R	(decomp.)/°C	φ _R	M.p./°C	
I _{1,4}	6.5×10^{-3}	131			
I _{1,5}	3.7×10^{-2}	150			
$I_{1,8}$	3.2×10^{-2}	158			
$ I_{1,4} \\ I_{1,5} \\ I_{1,8} \\ I_{2,6} $	1.0×10^{-3}	162	5.5×10^{-3}	186	


^a Degassed THF, room temp., conc. $\approx 2-5 \times 10^{-2}$ M.

different aldehydes, the 9-monosubstituted (24%) and the 1,5-disubstituted (45%) derivatives, in contrast to anthracene which yields only anthracene-9-carbaldehyde.⁸

Irradiation of compounds I (except $I_{9,10}$ which is very poorly photoreactive) with a 400 W medium pressure mercury lamp through Pyrex, in carefully purified and freeze and thaw degassed tetrahydrofuran (THF) (100 ml, 2×10^{-2} M), gave the colourless dimeric products II_s (Table 2) which were fully identified by u.v. and 250 MHz ¹H n.m.r. spectroscopy. The u.v. spectra of photocyclomers II_s, exclusively obtained from I_{1,4}, I_{1,5}, and I_{1,8}, do not show any naphthalene absorption and the n.m.r. spectra are typical of the structure of 'normal' anthracene photodimer as no naphthalene or vinyl protons are detected.^{1,9} In contrast to the preceding compounds, I_{2,6} was found to produce two different kinds of photodimers II_s and II_a ([II_a]/[II_s] > 5) which were isolated by fractional crystallisation followed by silica gel column chromatography, eluting with dichloromethane–ligroin (10:90–50:50).

While the minor photoproduct II_s displayed the classical anthracenic photodimer geometry¹ (9,10'-10,9' bond formation, $\lambda_{max.} < 300$ nm; H₉, H₁₀, H_{9'}, and H_{10'} gave a single resonance singlet at δ 4.36; $II_{s(2,6)}$ smoothly reverts to $I_{2,6}$ on heating), the major photoproduct II_a was found to have a dissymmetrical structure (Figure 1). Its u.v. spectrum exhibits a naphthalene pattern which implies⁹ that the cycloaddition is

likely to occur between the 9,10-positions of one ring and the 1',4'-positions of the other ring $[\lambda_{max.} (\varepsilon_{max}): 336 (1 560); 322 (975), 299 (2 790), 281 (5 200), 272 (6 100), 260 (8 830), and 239 (31 400)].$ This dissymmetrical geometry is fully confirmed by the ¹H n.m.r. analysis§ (CDCl₃). Bonding with the vertices

[§] $H_{1'}$ and $H_{4'}$ are coupled with the bridgehead protons H_9 [$\delta 4.32 (J_{1'-9} 10 \text{ Hz})$] and H_{10} [$\delta 3.99 (J_{4'-10} 11 \text{ Hz})$], respectively. The naphthalene protons H_9 and $H_{10'}$ gave a single peak at $\delta 7.13$, $H_{7'}$ ($\delta 6.10$) and $H_{8'}$ (6.64) form an AB pattern with $J_{7'-8'}$ 8.1 Hz, $H_{7'}$ being coupled with $H_{5'}$ [$\delta 6.42 (J_{7'-5'} 2.2 \text{ Hz})$]. The benzene protons gave two sets of signals due to the dissymmetry of the molecule [$H_3: \delta 6.94$ and $H_4: \delta 7.46 (J_{3-4} 8.9 \text{ Hz})$, $H_1: \delta 6.89 (J_{1-3} 2.2 \text{ Hz})$, $H_7: \delta 6.64$ and $H_8: \delta 6.99 (J_{7-8} 8 \text{ Hz})$, $H_5: \delta 6.90 (J_{5-7} 2.2 \text{ Hz})$].

1' and 4' leads to the formation of a double bond characterised by the typical chemical shift of the ethylenic proton $H_{3'}$ (δ 4.60) which is coupled with $H_{4'}$ (δ 4.34, $J_{3'-4'} = 6$ Hz) and $H_{1'}$ [δ 3.98 ($J_{1'-3'}$ 1.7 Hz)].

Consideration of the chemical shifts displayed by the protons of the CH₂–O groups shows that photoproduct II_a is in fact a 1:1 mixture of two isomers¶ ('syn' and 'anti' forms). Indeed, the protons in the vicinity of position 2', which undergo the most important effect due to their proximity to the non-symmetrical substituted benzenic ring, gave two distinct triplets (δ 2.77 and 3.32). The protons of the other O–CH₂ groups exhibit a moderate splitting for their respective n.m.r. signals.

We are grateful to Dr. E. A. Chandross (visiting Professor) for fruitful discussions.

Received, 24th May 1988; Com. 8/02081G

¶ Photodimers II, also exhibit two isomers (the 'svn' and 'anti' forms).

References

- 1 H. Bouas-Laurent, A. Castellan, and J.-P. Desvergne, *Pure Appl. Chem.*, 1980, **52**, 2633, and references therein.
- 2 M. Daney, C. Vanucci, J.-P. Desvergne, A. Castellan, and H. Bouas-Laurent, *Tetrahedron Lett.*, 1985, 26, 1505; H. D. Becker and K. Sandros, *ibid.*, 1983, 24, 3273.
- 3 A. Iwama, T. Toyoda, M. Yoshida, T. Otsubo, Y. Sakata, and S. Misumi, Bull. Chem. Soc. Jpn., 1978, 51, 2988.
- 4 J. Rigaudy, J. Guillaume, and D. Maurette, Bull. Soc. Chim. Fr., 1971, 144, and references therein; H. H. Wasserman and D. L. Larsen, J. Chem. Soc., Chem. Commun., 1972, 254; B. H. Klanderman, J. Am. Chem. Soc., 1965, 87, 4649.
- 5 J. B. Birks, 'Photophysics of Aromatic Molecules,' Wiley Interscience, London, 1970, (a) p. 251, (b) pp. 121 and 352.
- 6 R. P. Steiner and J. Michl, J. Am. Chem. Soc., 1978, 100, 6861. 7 F. Fages, J.-P. Desvergne, and H. Bouas-Laurent, Bull. Soc.
- Chim. Fr., 1985, 959. 8 L. F. Fieser, J. L. Hartwell, and J. E. Jones, Org. Synth., Coll.
- Vol. III, p. 98.
- 9 A. Castellan, J.-P. Desvergne, and H. Bouas-Laurent, Nouv. J. Chim., 1979, 3, 231.
- 10 J.-P. Desvergne, N. Bitit, A. Castellan, H. Bouas-Laurent, and J.-C. Soulignac, J. Lumin., 1987, 37, 175.